1. Shirin Shahabi S, Esfarjani F, Reisi J, Momenzadeh S, Jami MS, Saeed Zamani S. The effects of 8-week resistance and endurance trainings on bone strength compared to irisin injection protocol in mice. Adv Biomed Res. 2021;10(1):40. pmid: 35071108 doi: 10.4103/abr.abr_220_20
2. Bersiner K, Park SY, Schaaf K, Yang WH, Theis C, Jacko D, et al. Resistance exercise: A mighty tool that adapts, destroys, rebuilds and modulates the molecular and structural environment of skeletal muscle. Phys Act Nutr. 2023;27(2):78-95. pmid: 37583075 doi: 10.20463/pan.2023.0021
3. McIntosh MC, Sexton CL, Godwin JS, Ruple BA, Michel JM, Plotkine DL, et al. Different resistance exercise loading paradigms similarly affect skeletal muscle gene expression patterns of myostatin-related targets and mTORC1 signaling markers. Cells. 2023;12(6):898 . pmid: 36980239 doi: 10.3390/cells12060898
4. Chow LS, Gerszten RE, Taylor JM, Pedersen BK, van Praag H, Trappe S, et al. Exerkines in health, resilience and disease. Nat Rev Endocrinol. 2022;18(5):273-89. pmid: 35304603 doi: 10.1038/s41574-022-00641-2
5. Borhani Kakhki Z, Naibifar S, Nakhaei H, Ghasemi E. The effect of eight weeks of high-intensity interval training vs. continuous training on serum Irisin levels and expression of skeletal muscle PGC-1α gene in male rats with metabolic syndrome [in Persian]. Journal of Sport and Exercise Physiology. 2022;15(2):95-103. doi: 10.52547/joeppa.15.2.95
6. Waseem R, Shamsi A, Mohammad T, Hassan MI, Kazim SN, Chaudhary AA, et al. FNDC5/irisin: physiology and pathophysiology. Molecules. 2022;27(3):1118. pmid: 35164383 doi: 10.3390/molecules27031118
7. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481(7382):463-8. pmid: 22237023 doi: 10.1038/nature10777
8. Rahimi GRM, Hejazi K, Hofmeister M. The effect of exercise interventions on Irisin level: a systematic review and meta-analysis of randomized controlled trials. EXCLI J. 2022;21:524-39. pmid: 36110558 doi: 10.17179/excli2022-4703
9. Ma C, Ding H, Deng Y, Liu H, Xiong X, Yang Y. Affiliations . Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise. Front Physiol. 2021;12:620608. pmid: 33597894 doi: 10.3389/fphys.2021.620608
10. Aghaei Bahmanbeglou N, et al. High intensity interval training leads to protein synthesis through the complex pathway of a target of rapamycin (mTORC1) in the heart muscle tissue of a type 1 diabetic rats [in Persian]. J Sabzevar Univ Med Sci. 2021;28(1):49-55.
11. Pignataro P, Dicarlo M, Zerlotin R, Zecca C, Dell'Abate MT, Buccoliero C, et al. FNDC5/Irisin system in neuroinflammation and neurodegenerative diseases: update and novel perspective. Int J Mol Sci. 2021;22(4):1605. pmid: 33562601 doi: 10.3390/ijms22041605
12. Cho SY, Roh HT. Effects of aerobic exercise training on peripheral brain-derived neurotrophic factor and eotaxin-1 levels in obese young men. J Phys Ther Sci. 2016;28(4):1355-8. pmid: 27190482 doi: 10.1589/jpts.28.1355
13. Halievski K, Xu Y, Haddad YW, Tang YP, Yamada S, Katsuno M, et al. Muscle BDNF improves synaptic and contractile muscle strength in Kennedy's disease mice in a muscle‐type specific manner. J Physiol. 2020;598(13):2719-39. pmid: 32306402 doi: 10.1113/JP279208
14. Rojas Vega S, Strüder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res. 2006;1121(1):59-65. pmid: 17010953 doi:10.1016/j.brainres.2006.08.105
15. Wrann CD, White JP, Salogiannnis J, Laznik-Bogoslavski D, Wu J, Ma D, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell Metab. 2013;18(5):649-59. pmid: 24120943 doi: 10.1016/j.cmet.2013.09.008
16. Volpi E, Nazemi R, Fujita S. Muscle tissue changes with aging. Curr Opin Clin Nutr Metab Care. 2004;7:405-10. pmid: 15192443 doi: 10.1097/01.mco.0000134362.76653.b2
17. Sjöblom S, Suuronen J, Rikkonen T, Honkanen R, Kröger H, Sirola J. Relationship between postmenopausal osteoporosis and the components of clinical sarcopenia. Maturitas. 2013;75(2):175-80. pmid: 23628279 doi: 10.1016/j.maturitas.2013.03.016
18. Egner IM, Bruusgaard JC, Eftestøl E, Gundersen K. A cellular memory mechanism aids overload hypertrophy in muscle long after an episodic exposure to anabolic steroids. J Physiol. 2013;591(24):6221-30. pmid: 24167222 doi: 10.1113/jphysiol.2013.264457
19. Arazi H, Babaei P, Moghimi M, Asadi A. Acute effects of strength and endurance exercise on serum BDNF and IGF-1 levels in older men. BMC Geriatr. 2021;21(1):50. pmid: 33441099 doi: 10.1186/s12877-020-01937-6
20. Blocquiaux S, Gorski T, van Roie E, Ramaekers M, van Thienen R, Nielens H, et al. The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men. Exp Gerontol. 2020;133:110860. pmid: 32017951 doi: 10.1016/j.exger.2020.110860
21. Tahramuzi M, Seifi-Skishahr F, Afroundeh R, Katebi L, Farzizadeh R. The effect of long-term strength training on serum levels of betatrophin and irisin in elderly men with type 2 diabetes. Med J Tabriz Uni Med Sciences. 2023.45(4):325-36. doi: 10.34172/mj.2023.036
22. Ozan M, Karakurt S, Ağgön E, Ağirbaş Ö, Ucan E, Alp HH. The effects of strenght exercises on body composition and Irisin. International Journal of Applied Exercise Physiology. 2020;9(3):178-86. doi:10.26655/IJAEP.2020.3.6
23. Ferreira L, Borges M, Yumi Nagata G, Silva Barroso LS. Effects of a single strength training session on the peripheral concentrations of irisin in trained men. 2023. doi:10.21203/rs.3.rs-3263741/v1
24. Izaddoust F, Shabani R. Effects of strength training on serum levels of irisin and myostatin hormones, and their association with lipid profiles in untrained women [in Persian]. Iranian Journal of Endocrinology and Metabolism. 2017;19(1):41-9.
25. Huh JY, Dincer F, Mesfum E, Mantzoros CS. Affiliations . Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. I Int J Obes (Lond). 2014;38(12):1538-44. pmid: 24614098 doi: 10.1038/ijo.2014.42
26. Camporez JPG, Petersen MC, Abudukadier A, Moreira GV, Jurczak MJ, Friedman G, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A. 2016;113(8):2212-7. pmid: 26858428 doi: 10.1073/pnas.1525795113
27. Fortunato AK, Pontes WM, De Souza DMS, Ferreira Prazeres JS, Marcucci-Barbosa LS, Mól Santos JM, et al. Strength training session induces important changes on physiological, immunological, and inflammatory biomarkers. J Immunol Res. 2018;9675216. pmid: 30046617 doi: 10.1155/2018/9675216
28. Nuvagah Forti L, Njemini R, Beyer I, Eelbode E, Meeusen R, Mets T, et al. Strength training reduces circulating interleukin-6 but not brain-derived neurotrophic factor in community-dwelling elderly individuals. Age (Dordr). 2014;36(5):9704. pmid: 25128203 doi: 10.1007/s11357-014-9704-6
29. Borges Junior M, Jacomini Tavares LF, Yumi Nagata G, Silva Barroso LS, Fernandes HB, Souza-Gomes FA, et al. Impact of strength training intensity on brain-derived neurotrophic factor. Int J Sports Med. 2024;45(02):155-61. pmid: 37871642 doi: 10.1055/a-2197-1201
30. Schiffer T, Schulte S, Hollmann W, Bloch W, Strüder HK. Effects of strength and endurance training on brain-derived neurotrophic factor and insulin-like growth factor 1 in humans. Horm Metab Res. 2009;41(3):250-54. pmid: 18975254 doi: 10.1055/s-0028-1093322
31. Marston KJ, Newton MJ, Brown BM, Rainey-Smith SR, Bird S, N Martins R, et al. Intense resistance exercise increases peripheral brain-derived neurotrophic factor. J Sci Med Sport. 2017;20(10):899-903. pmid: 28511848 doi: 10.1016/j.jsams.2017.03.015
32. Valipour Dehnou V, Motamedi R. The effect of one circuit training session on the serum levels of brain-derived neurotrophic factor and insulin-like growth factor-1 in the elderly [in Persian]. Salmand: Iranian Journal of Ageing 2019;13(4):428-39. doi: 10.32598/SIJA.13.4.428
33. Tsai SW, Chan YC, Liang F, Hsu CY, Lee IT. Brain-derived neurotrophic factor correlated with muscle strength in subjects undergoing stationary bicycle exercise training. J Diabetes Complications. 2015;29(3):367-71. pmid: 25682570 doi: 10.1016/j.jdiacomp.2015.01.014
34. Ravasi AA, Pournemati P, Kordi MR, Hedayati M. The effects of resistance and endurance training on BDNF and cortisol levels in young male rats [in Persian]. Journal of Sport Biosciences. 2013;5(1):49-78. doi: 10.22059/jsb.2013.30458.