Volume 27, Issue 6 (1-2025)                   J Arak Uni Med Sci 2025, 27(6): 363-369 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Hemmati Bushehri R, Jaafari M R, Mosayebi G, Ghazavi A, Ganji A. Preparation of Nanoliposomes Containing Rosemary Alcoholic Extract with Polyethylene Glycol Coating. J Arak Uni Med Sci 2025; 27 (6) :363-369
URL: http://jams.arakmu.ac.ir/article-1-7879-en.html
1- MSc in Medical Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
2- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
3- Department of Immunology, Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran
4- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences AND Traditional and Complementary Medicine Research Center (TCMRC), Arak University of Medical Sciences, Arak, Iran
5- Department of Immunology, Molecular and Medicine Research Center, School of Medicine, Arak University of Medical Sciences, Arak, Iran , aliganjy_1360@yahoo.com
Abstract:   (184 Views)
Introduction: Nowadays, plant-derived compound is widely used in medical treatment as complementary therapies. Rosemary is one of these plants that have anti-angiogenic and anti-tumor effects. However, low solubility and low bioavailability lead to limited use of this compound. To overcome this limitation, the use of liposomes is beneficial. So, this study aimed to prepare liposomes containing rosemary alcoholic extract to obtain the best formulation with best properties to use in the antitumor study.
Methods: Liposomes were prepared by Thin-Film-Hydration method in different ratios of rosemary extract, hydrogenated-soybean-phosphatidylcholine (HSPC), Cholesterol, and mPEG2000 (F1-F6). The characterization of nanoliposomes includes size, PDI (Poly dispersity index), zeta potential, encapsulation efficiency, and release rate was measured.
Results: The results showed that the average particle size and zeta potential were 113.4 nm and -10.8 mV, respectively. Encapsulation efficiency showed a range of 60- 90%. The average release rate of the extract was about 60%. Also, the results showed that the F1 formulation was transparent, had appropriate properties, and did not precipitate. F2 formulation was not transparent. F3-F4 formulations were precipitated, and F5-F6 formulations did not achieve the appropriate size.
Conclusions: This study proved that F1 formulation in a ratio of 55:30:5 HSPC/chol/mPEG2000 is the best formulation for the preparation of nanoliposomes containing rosemary alcoholic extract to achieve the best properties for use in cancer studies.
Full-Text [PDF 1333 kb]   (57 Downloads)    
Type of Study: Original Atricle | Subject: Basic Sciences
Received: 2024/11/14 | Accepted: 2024/11/27

References
1. Aarabi MH, Chabok H, Mirzapour A, Ardestani MS, Mostafa M. Preparation of nanoliposomes containing Rosmarinus offi cinalis L essential oil; A comparative study. Biosc Biotech Res Comm. 2017;10:105-10. doi: 10.21786/bbrc/10.1/15
2. Cravotto G, Boffa L, Genzini L, Garella D. Phytotherapeutics: an evaluation of the potential of 1000 plants. J Clin Pharm Ther. 2010;35(1):11-48. pmid: 20175810 doi: 10.1111/j.1365-2710.2009.01096.x
3. Monagas M, Brendler T, Brinckmann J, Dentali S, Gafner S, Giancaspro G, et al. Understanding plant to extract ratios in botanical extracts. Front Pharmacol. 2022;13:981978. pmid: 36249773 doi: 10.3389/fphar.2022.981978
4. Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders. I Iran J Basic Med Sci. 2020;23(9):1100-12. pmid: 32963731 doi: 10.22038/ijbms.2020.45269.10541
5. Vallverdú-Queralt A, Regueiro J, Martínez-Huélamo M, Rinaldi Alvarenga JF, Leal LN, Lamuela-Raventos RM. A comprehensive study on the phenolic profile of widely used culinary herbs and spices: Rosemary, thyme, oregano, cinnamon, cumin and bay. Food Chem. 2014;154:299-307. pmid: 24518346 doi: 10.1016/j.foodchem.2013.12.106
6. Nieto G, Ros G, Castillo J. Antioxidant and Antimicrobial Properties of Rosemary (Rosmarinus officinalis, L.): A Review. Medicines (Basel). 2018;5(3):98. pmid: 30181448 doi: 10.3390/medicines5030098
7. Jahanfar S, Gahavami M, Khosravi-Darani K, Jahadi M, Mohsin H, Todorov SD, et al. The effect of antioxidant properties of free and encapsulated rosemary extract in liposome on the oxidation process of canola oil. International Journal of Food Science & Technology. 2023;58(10):5521-9. doi: 10.1111/ijfs.16450
8. Tan W, Lu J, Huang M, Li Y, Chen M, Wu G, et al. Anti-cancer natural products isolated from chinese medicinal herbs. Chinese Medicine. 2011;6(1):27. pmid: 21777476 doi: 10.1186/1749-8546-6-27
9. Perez-Sanchez A, Barrajon-Catalan E, Ruiz-Torres V, Agullo-Chazarra L, Herranz-Lopez M, Valdes A, et al. Rosemary (Rosmarinus officinalis) extract causes ROS-induced necrotic cell death and inhibits tumor growth in vivo. Sci Rep. 2019;9(1):808. pmid: 30692565 doi: 10.1038/s41598-018-37173-7
10. Ghafarkhani S, Aarabi M, Safari M, Shafee Ardestani M, Kheiripour N. Anti-cancer effects of nanoliposomes containing Rosemary and Zataria multiflora boiss essential oils on hepg2 cell line under in vitro conditions [in Persian]. J Babol Univ Med Sci. 2022;24(1):141-50. doi: 10.22088/jbums.24.1.141
11. Jahanfar S, Gahavami M, Khosravi-Darani K, Jahadi M, Mozafari MR. Entrapment of rosemary extract by liposomes formulated by Mozafari method: physicochemical characterization and optimization. Heliyon. 2021;7(12):e08632. pmid: 35005281 doi: 10.1016/j.heliyon.2021.e08632
12. Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev. 2010;4(7):27-31. pmid: 22228938 doi: 10.4103/0973-7847.65322
13. Kateh Shamshiri M, Jaafari MR, Badiee A. Preparation of liposomes containing IFN-gamma and their potentials in cancer immunotherapy: In vitro and in vivo studies in a colon cancer mouse model. Life Sci. 2021;264:118605. pmid: 33096119 doi: 10.1016/j.lfs.2020.118605
14. Safarzaie A, Beik M, Alizadeh M, Firoozkoohi M. Liposomes and its applications in drug delivery. Nano science and Technology Conference: Gorgan; 2014.
15. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. pmid: 23432972 doi: 10.1186/1556-276X-8-102
16. Khabbazian S, Mirhadi E, Gheybi F, Askarizadeh A, Jaafari MR, Alavizadeh SH. Liposomal delivery of organoselenium-cisplatin complex as a novel therapeutic approach for colon cancer therapy. Colloids and surfaces B, Biointerfaces. 2024;242:114085. doi: 10.1016/j.colsurfb.2024.114085
17. Zhang H. Thin-film hydration followed by extrusion method for liposome preparation. Methods Mol Biol. 2017;1522:
18. Makaremi S, Ganji A, Ghazavi A, Mosayebi G. Inhibition of tumor growth in CT-26 colorectal cancer-bearing mice with alcoholic extracts of Curcuma longa and Rosmarinus officinalis. Gene Reports. 2021;22:101006. doi: 10.1016/j.genrep.2020.101006
19. González-Vallinas M, Reglero G, Ramírez de Molina A. Rosemary (Rosmarinus officinalis L.) Extract as a Potential Complementary Agent in Anticancer Therapy. Nutr Cancer. 2015;67(8):1221-9. pmid: 26452641 doi: 10.1080/01635581.2015.1082110
20. Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, et al. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res. 2024;34(1):178-202. pmid: 37378553 doi: 10.1080/08982104.2023.2226216
21. Zhao T, Liu Y, Gao Z, Gao D, Li N, Bian Y, et al. Self-assembly and cytotoxicity study of PEG-modified ursolic acid liposomes. Mater Sci Eng C Mater Biol Appl. 2015;53:196-203. pmid: 26042707 doi: 10.1016/j.msec.2015.04.022
22. Lamichhane N, Udayakumar TS, D'Souza WD, Simone CB, 2nd, Raghavan SR, Polf J, et al. Liposomes: Clinical Applications and Potential for Image-Guided Drug Delivery. Molecules. 2018;23(2):288. pmid: 29385755 doi: 10.3390/molecules23020288
23. Taher M, Susanti D, Haris MS, Rushdan AA, Widodo RT, Syukri Y, et al. PEGylated liposomes enhance the effect of cytotoxic drug: A review. Heliyon. 2023;9(3):e13823. pmid: 36873538 doi: 10.1016/j.heliyon.2023.e13823
24. Caldeira de Araujo Lopes S, Vinicius Melo Novais M, Salviano Teixeira C, Honorato-Sampaio K, Tadeu Pereira M, Ferreira LA, et al. Preparation, physicochemical characterization, and cell viability evaluation of long-circulating and pH-sensitive liposomes containing ursolic acid. Biomed Res Int. 2013;2013:467147. pmid: 23984367 doi: 10.1155/2013/467147
25. Maeda N, Takeuchi Y, Takada M, Sadzuka Y, Namba Y, Oku N. Anti-neovascular therapy by use of tumor neovasculature-targeted long-circulating liposome. Journal of controlled release : official journal of the Controlled Release Society. 2004;100(1):41-52. pmid: 15491809 doi: 10.1016/j.jconrel.2004.07.033
26. Choi S, Kang B, Yang E, Kim K, Kwak MK, Chang P-S, et al. Precise control of liposome size using characteristic time depends on solvent type and membrane properties. Sci Rep. 2023;13(1):4728. pmid: 36959258 doi: 10.1038/s41598-023-31895-z
27. Hoseini B, Jaafari MR, Golabpour A, Momtazi-Borojeni AA, Karimi M, Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci Rep. 2023;13(1):18012. pmid: 37865639 doi: 10.1038/s41598-023-43689-4
28. Wang M, Zhao T, Liu Y, Wang Q, Xing S, Li L, et al. Ursolic acid
29. liposomes with chitosan modification: Promising antitumor drug delivery and efficacy. Mater Sci Eng C Mater Biol Appl. 2017;71:1231-40. pmid: 27987679 doi: 10.1016/j.msec.2016.11.014
30. Jarzynska K, Gajewicz-Skretna A, Ciura K, Puzyn T. Predicting zeta potential of liposomes from their structure: A nano-QSPR model for DOPE, DC-Chol, DOTAP, and EPC formulations. Comput Struct Biotechnol J. 2024;25:3-8. PMID: 38328349 doi: 10.1016/j.csbj.2024.01.012
31. Yücel Ç, Şeker‐Karatoprak G. Development and evaluation of the antioxidant activity of liposomes and nanospheres containing rosmarinic acid. Farmacia. 2017;65(1):40-5.
32. Vakili-Ghartavol R, Rezayat SM, Faridi-Majidi R, Sadri K, Jaafari MR. Optimization of Docetaxel Loading Conditions in Liposomes: proposing potential products for metastatic breast carcinoma chemotherapy. Sci Rep. 2020;10(1):1-14. doi: 10.1038/s41598-020-62501-1
33. Pasarin D, Ghizdareanu AI, Enascuta CE, Matei CB, Bilbie C, Paraschiv-Palada L, et al. Coating Materials to Increase the Stability of Liposomes. Polymers (Basel). 2023;15(3): 782. PMID: 36772080 doi: 10.3390/polym15030782
34. Karimi M, Gheybi F, Zamani P, Mashreghi M, Golmohammadzadeh S, Darban SA, et al. Preparation and characterization of stable nanoliposomal formulations of curcumin with high loading efficacy: In vitro and in vivo anti-tumor study. Int J Pharm. 2020;580:119211. pmid: 32156530 doi: 10.1016/j.ijpharm.2020.119211

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb