1. Hermann, P.C., S.L. Huber, T. Herrler, A. Aicher, J.W. Ellwart, M. Guba, et al., Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007; 1(3): 313-23.
2. Zagorac, S., S. Alcala, G. Fernandez Bayon, T. Bou Kheir, M. Schoenhals, A. Gonzalez-Neira, et al., DNMT1 Inhibition Reprograms Pancreatic Cancer Stem Cells via Upregulation of the miR-17-92 Cluster. Cancer Res. 2016; 76(15): 4546-58.
3. Jemal, A., R.L. Siegel, J. Ma, F. Islami, C. DeSantis, A. Goding Sauer, et al., Inequalities in premature death from colorectal cancer by state. J Clin Oncol. 2015; 33(8): 829-35.
4. Siegel, D.A., J. King, E. Tai, N. Buchanan, U.A. Ajani and J. Li, Cancer incidence rates and trends among children and adolescents in the United States, 2001-2009. Pediatrics. 2014; 134(4): e945-55.
5. Sadikovic, B., K. Al-Romaih, J.A. Squire and M. Zielenska, Cause and consequences of genetic and epigenetic alterations in human cancer. Curr Genomics. 2008; 9(6): 394-408.
6. Yamada, Y., H. Haga and Y. Yamada, Concise review: dedifferentiation meets cancer development: proof of concept for epigenetic cancer. Stem Cells Transl Med. 2014; 3(10): 1182-7.
7. Feinberg, A.P. and B. Tycko, The history of cancer epigenetics. Nat Rev Cancer. 2004; 4(2): 143-53.
8. Jones, P.A. and S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet. 2002; 3(6): 415-28.
9. Linhart, H.G., H. Lin, Y. Yamada, E. Moran, E.J. Steine, S. Gokhale, et al., Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 2007; 21(23): 3110-22.
10. Gurdon, J.B., The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 1962; 10: 622-40.
11. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. cell. 2007; 131(5):861-72.
12. Lin, S.L., D.C. Chang, S. Chang-Lin, C.H. Lin, D.T. Wu, D.T. Chen, et al., Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA. 2008; 14(10): 2115-24.
13. Utikal, J., N. Maherali, W. Kulalert and K. Hochedlinger, Sox2 is dispensable for the reprogramming of melanocytes and melanoma cells into induced pluripotent stem cells. J Cell Sci. 2009; 122(Pt 19): 3502-10.
14. Miyoshi, N., H. Ishii, K. Nagai, H. Hoshino, K. Mimori, F. Tanaka, et al., Defined factors induce reprogramming of gastrointestinal cancer cells. Proc Natl Acad Sci U S A. 2010; 107(1): 40-5.
15. Zhang, X., F.D. Cruz, M. Terry, F. Remotti and I. Matushansky, Terminal differentiation and loss of tumorigenicity of human cancers via pluripotency-based reprogramming. Oncogene. 2013; 32(18): 2249-60, 2260 e1-21.
16. Kim, J. and K.S. Zaret, Reprogramming of human cancer cells to pluripotency for models of cancer progression. EMBO J. 2015; 34(6): 739-47.
17. Kim, J., J.P. Hoffman, R.K. Alpaugh, A.D. Rhim, M. Reichert, B.Z. Stanger, et al., An iPSC line from human pancreatic ductal adenocarcinoma undergoes early to invasive stages of pancreatic cancer progression. Cell Rep. 2013; 3(6): 2088-99.
18. Semi, K. and Y. Yamada, Induced pluripotent stem cell technology for dissecting the cancer epigenome. Cancer Sci. 2015; 106(10): 1251-6.
19. Schlaeger, T.M., L. Daheron, T.R. Brickler, S. Entwisle, K. Chan, A. Cianci, et al., A comparison of non-integrating reprogramming methods. Nat Biotechnol. 2015; 33(1): 58-63.
20. Duan, H., Z. Yan, W. Chen, Y. Wu, J. Han, H. Guo, et al., TET1 inhibits EMT of ovarian cancer cells through activating Wnt/beta-catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 2017; 147(2): 408-417.
21. De Bonis, M.L., S. Ortega and M.A. Blasco, SIRT1 is necessary for proficient telomere elongation and genomic stability of induced pluripotent stem cells. Stem Cell Reports. 2014; 2(5): 690-706.
22. Chen, C.W., R.P. Koche, A.U. Sinha, A.J. Deshpande, N. Zhu, R. Eng, et al., DOT1L inhibits SIRT1-mediated epigenetic silencing to maintain leukemic gene expression in MLL-rearranged leukemia. Nat Med. 2015; 21(4): 335-43.