جستجو در مقالات منتشر شده


2 نتیجه برای ماشین بردار پشتیبان

آرمان زمانی، ابوالقاسم بابایی، نیر سادات مصطفوی،
دوره 22، شماره 1 - ( 1-1398 )
چکیده

زمینه و هدف: تشخیص سرطان خون کار بسیار دشواری است، به همین دلیل نیاز به استفاده از تکنیک‌‌های پردازش تصویر می‌باشد. هدف اصلی این تحقیق، ارائه سیستمی بر پایه مدل‌‌های هوشمند بود که بتواند دقت سیستم تشخیصی را در زمینه سرطان خون نوع لوسمی حاد ارتقا بخشد.
مواد و روشها: تصاویر تهیه شده در این پژوهش از پایگاه داده University Degli Studi Dimilan  استخراج و در فضای نرمافزار MATlab 2014a پردازش شد. در این تحقیق از روش Fuzzy-Cmeans در بخش قطعه بندی و از تکنیک‌‌های مبتنی بر شبکه‌‌های عصبی و ماشین بردار پشتیبان در بخش شبکه‌‌های دستهبندیکننده استفاده شد.
ملاحظات اخلاقی: در این مطالعه، تمامی اصول اخلاق در پژوهش رعایت شده است.
یافتهها: با استفاده از انتقال تصویر اولیه به چهار فضای RGB، HSV،Lab  و Enhanced RGB  داده‌‌های مربوط به ویژگی‌‌‌ها استخراج شد. داده‌‌های بهدست آمده از مرحله قبل وارد شبکهSVM  شد و سپس شبکه داده‌‌های نرمال را از دادههای غیرنرمال جداسازی کرد. نتایج حاصل از مقایسه خروجی روش پیشنهادی با روش‌‌های آموزشی مختلف، بیشترین میانگین دقت برابر با مقدار 7/95 درصد را نشان داد.
نتیجهگیری: شبکه پیشنهادی به طور مناسب از مزایای هریک از شبکه‌‌‌ها بهطور جداگانه، بهرهبرداری نمود و موجب گردید که نقاط ضعف هریک از الگوریتم‌‌‌ها توسط دیگری برطرف گردد. این ترکیب شبکه‌‌‌ها سبب ارتقای دقت خروجی تا 98 درصد شد و از طرف دیگر زمان محاسبات انجام شده را به شدت کاهش داد.

ناصر صفدریان، شادی یوسفیان دزفولی نژاد،
دوره 23، شماره 2 - ( 3-1399 )
چکیده

زمینه و هدف: سرطان سینه  به دلیل رشد غیرقابل کنترل سلول های غیرطبیعی در سینه ایجاد می شود. در هر دو نوع تومورهای سرطانی خوشخیم و بدخیم، رشد سریع و زیاد سلول ها وجود دارد. امروزه، ﺑﺎ ﺗﻮﺟﻪ به ﮔﺴﺘﺮش ﺗﮑﻨﻮﻟﻮژی، ﺗﺸﺨﯿﺺ ﺑﯿﻤﺎریﻫﺎ از ﺣﺎﻟﺖ تهاﺟمی ﺧﺎرج ﺷﺪه و تلاش ﭘﺰﺷﮑﺎن و ﻣﺘﺨﺼﺼﺎن ﺑﺮ ایﻦ اﺳﺖ ﮐﻪ ﺗﺸﺨﯿﺺ بیماری را ﺑﺪون ﺟﺮاﺣﯽ و از روی ﺗﺼﺎویﺮ ارﮔﺎنﻫﺎی داﺧﻠﯽ اﻧﺠﺎم دﻫﻨﺪ. 
مواد و روش ها: پژوهش حاضر مطالعه ‏ای بر اساس بررسی اطلاعات پایگاه داده‏ی تصاویر دیجیتال ماموگرافی ( (DDSM می‏ باشد، که روشی جدید برای تشخیص و آشکارسازی توده ‏های سرطانی تصاویر ماموگرافی با استفاده از استخراج ویژگی های هندسی و بهینه‏ سازی پارامترهای الگوریتم ماشین بردار پشتیبان (SVM)، به منظور طبقه بندی خودکار توده های سرطان سینه ارائه شده است. در ابتدا پیش ‏پردازش تصاویر ماموگرافی انجام می شد، سپس با استفاده از روش آستانه‏ گذاری، مرزهای توده ها مشخص شد و سپس با عملگرهای مورفولوژی این مرزها بهبود یافته و درنهایت قطعه بندی تصاویر برای طبقه ‏بندی نوع توده ‏های سرطانی بافت سینه انجام شد. در مرحله نهایی با استفاده از روش بهینه‏ سازی پارامترهای طبقه‏ بندی کننده‏ی SVM با کمک الگوریتم بهینه ‏سازی ملخ، و استفاده از روش اعتبارسنجی 4-fold طبقه بندی داده‌ها به دو دسته ‏ی خوشخیم و بدخیم انجام شد.
ملاحظات اخلاقی: در این پژوهش از تصاویر پایگاه داده‏ ی DDSM استفاده شده است. لازم به ذکر است که تصاویر موجود در این پایگاه داده بصورت رایگان جهت دسترسی وجود دارند.
یافته ها: بهترین نتایج شاخص ‏های صحت، حساسیت و اختصاصیت (ویژگی) به ازای به‌کارگیری تابع کرنل (RBF) پیش از انجام عملیات بهینه‏ سازی پارامترهای طبقه ‏بندی کننده ‏ی SVM به ترتیب برابر با 97%، 100% و %96 بدست آمد. همچنین، بهترین نتایج شاخص‏ های صحت، حساسیت و اختصاصیت به ازای به‌کارگیری تابع کرنل خطی، پس از انجام عملیات بهینه‏ سازی پارامترهای طبقه‏ بندی کننده ‏ی SVM با الگوریتم بهینه ‏سازی ملخ، به ترتیب برابر با %100، %100 و %100 بدست آمد که نشان ‏دهنده ی دقت بالای روش پیشنهاد شده در این مقاله است.. متوسط مقادیر شاخص ‏های صحت، حساسیت و اختصاصیت به ازای بکارگیری هر سه تابع کرنل SVM و پس از اعمال الگوریتم بهینه‏ سازی، به ترتیب برابر با 95/83، 100 و 94/81 درصد به دست آمد.
نتیجه گیری: بر اساس روش پیشنهاد شده در این مقاله، ویژگی های هندسی به‌دست آمده از بافت توده‏ های سرطانی سینه جهت آموزش مدل و تشخیص نوع توده سرطان سینه دارای کارایی بالایی است و روش  بهینه سازی ملخ  با انجام بهینه سازی پارامترهای طبقه ‏بندی کننده، دقت کلی تشخیص روش ارائه شده را بهبود بخشیده است. بنابراین نتایج حاصل از این پژوهش نشان ‏دهنده ‏ی عملکرد بالای روش پیشنهاد شده در مقاییسه با سایر پژوهش های پیشین انجام شده در این زمینه است.


صفحه 1 از 1     

کلیه حقوق این وب سایت متعلق به مجله دانشگاه علوم پزشکی اراک می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2025 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb