Raziyeh Khalesi, Jafar Salimian, Shahram Nazarian, Zahra Ehsaei , Ali Asghar Rahimi, Nafiseh Amini, Seyed Mohammad Moazzeni,
Volume 15, Issue 1 (4-2012)
Abstract
Background: Enterotoxigenic Escherichia coli bacterium is the most important bacterial agent causing diarrhea. Specific virulence factors, such as enterotoxins and colonization factors, distinguish ETEC from other classes of diarrheagenic E.coli. In this study, heat-labile toxin was purified which could be utilized for anti-toxin assay in GM1 gangelioside receptor-ELISA based method and for identification of ETEC producing toxin.
Materials and Methods: In this experimental study, bacterial strain producing heat-labile toxin was first cultivated for production and purification of toxin. Then supernatant soluble proteins were precipitated with ammonium sulfate and purified using biochemical methods. Finally, purified protein was dialyzed against Tris 0.02 mM pH 8 and analyzed on gel electrophoresis. GM1 gangelioside receptor-ELISA based method was used for detection and assessment of the purified toxin. Through this method, the effect of anti-recombinant heat-labile toxin B subunit neutralization on heat-labile toxin was investigated.
Results: Toxin purification was revealed by the presence of 12 and 28 KD protein bands. This study demonstrated that anti-recombinant heat-labile toxin B subunit antibody can detect the purified toxin and can inhibit its binding to GM1 receptor up to 80%.
Conclusion: Purification of heat-labile toxin and gangelioside receptor-ELISA assay can be used for accurate detection and epidemiological study of clinical isolates.
Pooneh Roghanian, Jafar Amani, Shoreh Zare, Zahra Nour Mohammadi,
Volume 22, Issue 1 (4-2019)
Abstract
Background and Aim: Enterotoxigenic Escherichia coli (ETEC) is one of the most common bacterial causes of diarrhea deaths among children and travelers in developing countries. The ETEC colonization factors, such as CFA/I and CS2 play an important role in the development of the disease. In this study, to produce the CFaE fusion recombinant protein, the tip subunits CFA/I(CfaE) and sub structural unit of CS2 (CotD) from ETEC, were used. Since mucosal immune responses to CFs can prevent disease, the aim of this study was to develop a chimeric antigen for developing the effective vaccine.
Materials and Methods: In order to amplify the cfae-cotd gene, a dual gene construct consisting of cfae and cotd, the PCR reaction was performed by designed primers. The propagated gene was cloned in the expression vector pET28a. Following the induction of a recombinant gene construct with IPTG, the recombinant protein was expressed and purified by Ni-NTA chromatography column and confirmed by western blotting by Anti-Histag.
Ethical Considerations: This study with research ethics code IR.IAU.SRB.REC.1397.066 has been approved by research ethics committee at Islamic Azad University, Science and Research Branch of Tehran, Iran.
Findings: Cloning accuracy was confirmed by PCR and enzyme digestion reaction. The presence of the band in the SDS-PAGE 10% gel in the 68 kDa region, the expression of the recombinant protein, and the presence of the band on the nitrocellulose paper in the Western blotting test confirmed the production of recombinant protein.
Conclusion: Optimization of codon and expression in heterologous hosts is a useful method for the production of recombinant proteins. The production of ETEC antigens as a candidate for vaccination against this bacterium is also prominent.