Search published articles


Showing 2 results for Copper Nanoparticles

Sanaz Alizadeh, Naser Aghdami, Bagher Seyed Alipour,
Volume 20, Issue 1 (4-2017)
Abstract

Abstract

Background: Copper nanoparticles (Cu NPs) induced angiogenesis, has been adapted to respond the most important challenging in wound healing. But due to the toxicity of nanoparticles, the nontoxic concentrations is important. The aim of this study was to determine the concentration and size of copper nanoparticles for investigating the effect of its cytotoxicity on the endothelial cell.

Materials and Methods: In this study, we exposed Cu NPs (40nm) with concentrations of 1, 10, 100 μM and 1 ,10 mM to endothelial cells and evaluate its viability effect after 24, 48 and 72 hours, according to the MTS) Methy Thiazol Tetrazolium (assay. Its optical density was determined using an ELISA reader and then was recorded.

Results: The findings demonstrated that Cu NPs was significantly (p<0.05) cytotoxic in concentration higher than 100 μM and cell viability was significantly increased following 48 and 72 hours in all concentrations, so that, the most difference was seen in 100 µM concentration. The IC50 values of Cu NPs at incubation time 24, 48 and 72 hours were 31.44, 36.67 and 29.38 μM.

Conclusion: The results showed that different concentration of Cu NPs in the 48 and 72 hours didn’t cause any cytotoxicity effect, but it stimulated endothelial cell proliferation. Therefore, Cu NPs with dose and time dependent effect has been increased endothelial cell proliferation.


Mahdi Jafarzadeh, Mojtaba Salouti, Rasoul Shokri,
Volume 20, Issue 6 (9-2017)
Abstract

Abstract
Background: Candida glabrata is the fourth most common cause of blood infection in America and, due to its resistance to amphotericin B, we have to look for new therapies. The aim of this study was to evaluate the antifungal properties of silver nanoparticles, copper and combine them together with amphotericin B in order to produce an effective drug.
Materials and Methods: Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) for nano silver copper and combining them together and amphotericin B was conducted by macro dilution. By intraperitoneal injection, anti-fungal effect of nano silver, copper and combining them together and amphotericin B was evaluated in a mouse model.
Results: The amounts of MIC and MFC for silver nanoparticles, copper nanoparticles and their combination were 31 and 62.50 ppm, 31 and 62.50 ppm ,and 31and 15.50 ppm, respectively. The amounts of MIC and MFC for the combination of silver nanoparticles and amphotericin B were 8 and 15.5 ppm, also, 15.5 and 31 ppm for the combination of copper nanoparticles and amphotericin B. Mouse model study confirmed the effect of silver nanoparticles, copper nanoparticles and combining them together and amphotericin B against Candida glabrata. The combination of silver and copper nanoparticles had maximum effect and the combination of silver and copper nanoparticles with amphotericin B had minimum effect in animal model.
Conclusion: The combination of silver and copper nanoparticles has a better effect than other groups.


Page 1 from 1     

© 2025 CC BY-NC 4.0 | Journal of Arak University of Medical Sciences

Designed & Developed by : Yektaweb